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Symbols

A;B vectors used in orthogonalization

C analytical blending function

ds speci�ed grid spacings at boundary

E variable analogous to homotopic parameter

f; h homotopic mappings

H boundary curve

I; J; K loop indices

m exponent used to distribute homotopic parameter

P number of processors

p; q exponents used for orthogonalization

r; s exponents used to remove intersection of trajectories

S speed-up ratio

T execution time

U unit interval

x; y; z Cartesian coordinate directions

� homotopic parameter

� scaling function

� circumferential parameter for de�ning boundary shapes

Subscripts:

i inner boundary

o outer boundary

p number of processors

Abbreviations:

CAS Computational Aerosciences Project

CFD computational 
uid dynamics

CFS concurrent �le system

I/O input/output

iPSC Intel parallel supercomputer

MIMD multiple instruction multiple data

SCSI small computer systems interface

SOR successive overrelaxation method

SRM system resource module
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Summary

A careful examination of the algebraic scheme
for grid generation based on homotopic relations has
revealed highly parallelizable characteristics. Im-
plementation of this parallel scheme on the Intel
iPSC/860 computer has resulted in e�cient soft-
ware that demonstrates good correlation of speed-
up ratios with the number of processors used. The
software accepts discrete point data sets as input
geometries. It also generates blended wing-body con-
�gurations by a semianalytic procedure. The Intel
concurrent �le system (CFS) is used for e�cient im-
plementation of parallel I/O operations. The num-
ber of points in each coordinate direction is normally
chosen to be a multiple of the number of processors
for perfect scalability; however, this is not a strict
requirement. The algebraic procedure for grid gener-
ation is explicit and therefore requires minimal inter-
processor communication overhead. The grid is gen-
erated in cross-sectional planes that are stacked along
the longitudinal axis of the input geometry to pro-
duce a quasi-three-dimensional grid system. Multiple
levels of parallelism are investigated in this report. In
the �rst level of parallelism, the cross-sectional planes
are distributed over the processors in an interleaved
manner. The second level of parallelism is achieved
by distributing the radial lines of a cross-sectional
planar grid over the processors. The Express1 system
of software tools has been used to enhance portability
of the grid-generation software. The Express version
of the code has been implemented successfully on the
Intel iPSC/860 computer as well as a network of Sun
workstations. Test cases for the programming modes
consist of a blended wing-body con�guration in the
case of the analytically generated input geometry and
a high-speed civil-transport con�guration for the dis-
crete case. The analytical geometry is de�ned by
64 cross-sectional planes, each containing 32 points
along the circumference. The discretely de�ned geo-
metry contains 64 cross-sectional planes, each with
42 circumferential points on the surface. The num-
ber of grid points in the radial direction is 49 in both
cases. All cases demonstrate the parallel behavior of
the software in all programming modes and on all
hardware platforms used.

Introduction

Grid generation is an indispensable pre-
requisite for computational 
uid dynamics (CFD) re-
search. Given the importance and computationally
intensive nature of the grid-generation process, evi-
dence of parallel grid-generation methods in existing
literature is surprisingly scant.

1 Express is a registered trademark of ParaSoft Corporation.

Current grid-generation methods are essentially
sequential. These methods generally compute near-
orthogonal trajectories that span the gap between
speci�ed inner and outer boundaries. Computa-
tion of each point on a trajectory is usually heav-
ily dependent on the coordinates of the neighboring
points. The dependence is larger for grid genera-
tors employing systems of partial di�erential equa-
tions than for those generators based on algebraic
interpolation schemes; nevertheless, parallelization of
the scheme in either case generally involves exten-
sive communication between processors to transfer
relevant information about surrounding points.

In view of the CFD issues outlined by Holst et al.
(ref. 1), development of advanced parallel algorithms
for generating grids for computation of 
ows about
aerospace vehicles is a major requirement. The ad-
vent of high-performance parallel computers has al-
ready prompted substantial research in the realm of
parallel 
ow solvers. In comparison, the develop-
ment of parallel grid-generation methods is lagging
behind. Future time-dependent multidisciplinary ap-
plications in the NASA Computational Aerosciences
Project (CAS) require integrating a regridding step
into the CFD simulation software in order to re
ect
changes in aircraft location and aerodynamic control
surface positions. This goal can only be achieved by
developing parallel grid-generation algorithms that
can be coupled with parallel 
ow solvers for execution
on massively parallel computers.

One parallel scheme for grid generation consists of
decomposing the computational domain into as many
parts as there are processors in the hardware and dis-
tributing the computational work for these parts as
evenly as possible among the processors. A broad
overview of the desirable characteristics of parallel
grid-generation systems has been given by Gentzsch
(ref. 2). The levels of performance of these systems
are mainly determined by four factors: (1) the de-
gree of parallelism in the algorithm, (2) the evenness
of computational load balancing, (3) the amount of
interprocessor communication necessary, and (4) cor-
relation of performance with the number of proces-
sors. In the ideal system, these requirements are in
perfect harmony. Most currently available serial or
vector algorithms are not optimally suited for achiev-
ing this harmony. These existing algorithms were de-
veloped for scalar computers and are often di�cult
to parallelize because of their sheer complexity, (e.g.,
their implicitness, nonlinearity, and recursion). It is
imperative that future research be directed toward
development of special parallel algorithms that fa-
cilitate near-optimal mapping of advanced hardware
and topology. This goal can be met by simple explicit



algorithms that minimize interprocessor communica-
tion. Parallel implementation of such methods en-
tails little more than distributing the main loop index
over the processors.

A parallel grid-generation scheme must address
several key issues unique to problems of computa-
tional geometry and grid generation. Generally, a
structured grid must be body conforming, smoothly
varying, properly clustered, and nearly orthogonal
at relevant boundaries. In addition, the grid must
not be discontinuous or overly skewed, and it should
not waste points in regions of the domain where lit-
tle change in the relevant physical properties takes
place. The above considerations make it clear that
grid generation often necessitates a global knowledge
of the domain to be generated. However, this global
concept is di�cult to maintain when the domain is
decomposed and distributed to individual processors
and constitutes a major obstacle in developing truly
parallel grid-generation algorithms.

Two implementations of a structured grid-
generation algorithm that solve partial di�erential
governing equations by a successive overrelaxation
(SOR) method have been reported by Gentzsch and
H�auser (ref. 2). The �rst implementation on the
Alliant FX/80 shared memory computer is based on
dividing the computational domain into smaller por-
tions, which are simultaneously processed on indi-
vidual processors. Each �rst and last inner grid line
of a partition is a boundary grid line of the neigh-
boring partitions. After each iteration of the SOR
algorithm, the boundary data are exchanged among
neighboring grids through interprocessor communi-
cation. A synchronization point is needed at the end
of every iteration to ensure that all segments begin
the next iteration with updated boundary data. The
second implementation is for the distributed mem-
ory, tree-structured system TX3 of iP-Systems. In
this model, the problem is successively divided into
two subtasks of identical complexity. Because the
partitioning of the complex physical domain is highly
unstructured, the organization of the communication
pattern between the processors is a complex task.

A parallel algorithm for automatic mesh re�ne-
ment has been presented by Berger (ref. 3). This
scheme uses nested grids with recursively re�ned
mesh spacings in regions where greater resolution is
needed in the solution. The �ner grids are super-
imposed on the underlying coarser grids. A binary
decomposition technique is used to partition the do-
main so that the workload is distributed as evenly as
possible. An a priori estimate of the computational
work over the entire domain is essential for applying
this technique. The partition is a function of time

because a repartitioning is necessary whenever the
grid hierarchy is changed.

L�ohner et al. (ref. 4) have reported an interesting
algorithm for parallel unstructured triangular grids.
This algorithm is based on an advancing front tech-
nique for �lling empty space that introduces points
with distribution prescribed by background grids. A
crucial condition for achieving parallelism is that the
neighborhoods of the points to be introduced do not
overlap. Therefore, distance enables parallelism. Un-
structured grids are free from the constraints of or-
thogonality and continuity of grid lines. However,
smoothness of variations in shape and size of grid
cells is still a constraint. A Laplace smoother is used
in each subdomain to improve the uniformity of the
grid. A communication scheme for exchange of infor-
mation between processors allows movement of the
boundary points at subdomain interfaces. This al-
gorithm has been implemented with the host-node
programming model on the Intel hypercube.

The algorithm presented in this paper employs an
algebraic homotopic procedure that develops into a
completely explicit numeric scheme. (A homotopy is
essentially a family of maps of smooth lines between
two given surfaces.) The maps are generated by the
smooth variation of a parameter in a unit interval
between the given surfaces. The resulting procedure
is inherently parallel. This algorithm has been im-
plemented on the Intel iPSC/860 hypercube machine
and a network of Sun workstations. A sequential ver-
sion of the algorithm (refs. 5 and 6) has been used
for high-speed 
ow simulation for aircraft over the
past several years. The basic method, which is com-
pletely explicit, allows arbitrary decomposition of the
domain into blocks that can be processed on individ-
ual processors in parallel. The software has a built-in
provision for analytically generating blended wing-
body surface geometries, but it also accepts input
geometries speci�ed as a set of discrete points. The
grid generation scheme uses a homotopic blending
technique for generating surfaces between the body
surface and a speci�ed outer boundary surface while
maintaining near-orthogonal trajectories in the vicin-
ity of the body surface. The grid is generated in
cross-sectional planes along the longitudinal axis of
the input geometry. For the analytically generated
input geometry, the schemes for generating the body
surface and the grid points can be integrated into one
procedure that allows the computation of each grid
point independently of other grid points. Any re-
quired boundary data can be generated in each indi-
vidual processor, thus virtually eliminating the need
for expensive interprocessor communications. In the
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discrete case, necessary boundary data can be read
in parallel into each processor from the CFS.

Theory and Mathematical Development

Grid Generation

The grid is generated through determination of
a family of curves representing a smooth and grad-
ual transition from the given inner boundary (xi; yi)
to the outer boundary (xo; yo) in two-dimensional
planes at each z-station. Assuming that the body
surface coordinates are available, either as an ana-
lytic description or as a set of discrete points, a distri-
bution of a homotopic parameter � is speci�ed. The
� distribution may be speci�ed by means of poly-
nomials, exponents, or trigonometric functions while
ensuring that � = 0 on the body surface and � = 1 on
the outer boundary. A shape transition function C

for the grid is then speci�ed by

C(�) = 1� �m (1)

where m is a positive exponent providing control over
line spacing near boundaries. Thus C = 1 on the in-
ner boundary and C = 0 on the outer boundary, with
a smoothly varying distribution between boundaries.
The function C is taken to be independent of z; it
retains the same value at each z-station. Essentially
the transition curves are de�ned by a family of maps
given by the homotopy�

h� : A! Bj�"U
	

(2)

where U is the unit interval [0; 1]. The inner and
outer boundaries Hi and Ho are two homotopic maps
such that ho = Hi and h1 = Ho. A scaling func-
tion � for the grid lines is then de�ned such that
�i < � < �o, where �i and �o are the scaling function
values associated with the inner and outer bound-
aries. Since the size of the inner surface and possibly
that of the outer surface vary with z, � is not inde-
pendent of z. The grid is de�ned at each z-station
in terms of the functions C(�) and �(�), and a nat-
ural correspondence is established between the grid
points at the various z-stations. Coordinates of each
boundary are expressed in terms of a parameter � .
For the inner boundary

xi = xi(�)

yi = yi(�)

)
(3)

and similar expressions denote the coordinates of
the outer boundary. In polar coordinates, � could
represent the angular coordinate. If y can be ex-
pressed as a single-valued function of x, then � = x.

For shapes of greater complexity, the choice of vari-
ables varies. An arithmetic averaging between the
boundaries yields the simplest family of grid lines
given by

x(�; � ) = �fC(�)xi(� ) + [1�C(�)] xo(� )g

y(�; � ) = �fC(�) yi(� ) + [1�C(�)] yo(� )g

)
(4)

where (xi; yi) and (xo; yo) are corresponding points
on the inner and outer boundaries, as shown in �g-
ure 1. Geometric averaging may be used for smoother
transition in cases involving complex geometries with
sharp corners.

Smooth variations of the inner and outer bound-
aries with respect to z results in smoothly varying
grid lines in the z-direction. Particular constant val-
ues of the �-parameter generate speci�c curves of
the family described by equations (4), and a pre-
chosen distribution of � determines the spacing of
the resulting set of curves in each cross-sectional
plane. Judicious modi�cations of the function C(�)
and the distribution of � result in approximate or-
thogonality of grid lines at physical boundaries and
concentration of grid lines near boundaries. The pla-
nar grids are stacked along the Z-axis to produce a
three-dimensional grid system, as shown in �gure 2.

Orthogonality and Spacing Control

Orthogonality and prescribed spacing near phys-
ical boundaries are two important characteristics of
grid systems used in CFD studies. The grid must
also be smooth and free from intersecting grid lines
of the same family. The present method provides
orthogonality and control over spacing while main-
taining smoothness and preventing grid intersections
by a technique for local perturbation of the homo-
topic parameter. The required amount of perturba-
tion is derived from the boundary data exploiting the
stability properties of homotopic maps under pertur-
bation. A property is said to be stable if wherever
fo : x! y possesses the property and ft : x! y is a
homotopy of fo, then for some " > 0, each ft with
t < " also possesses the property. The properties of
smoothness of the grid and conformity of the over-
all grid with the given boundaries are stable under
slight deformations of the map caused by small per-
turbations of the homotopic parameter. The basic
interpolation scheme, equations (4), may be written
in a modi�ed form as

x = xiE
p+ xo(1�Ep)

y = yiE
q + yo(1� Eq)

)
(5)
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where

E = 1� �m (6)

The subscripts i and o denote the inner and outer
boundaries. Here E is analogous to a homotopic
parameter. Modi�cations of E , therefore, cause
slight deformations of a given map and may be
used to achieve orthogonality and prescribed spacing
at the inner boundary. This control is provided
through the use of the exponents p and q. These
exponents are not constants and their values must
be determined from the boundary data subject to the
constraints of orthogonality and required spacing.

The orthogonality condition requires that the vec-
tors A and B in �gure 3 be orthogonal. The vectorA
is found by connecting the point (xi; yi) on the in-
ner boundary and the point (x; y) lying just o� the
boundary on the trajectory in question. The second
vector B passes through the point (xi; yi) and a point
(x0; y0) on the line passing through (xi; yi) and par-
allel to the line joining (xi+1; yi+1) and (xi�1; yi�1)
on the inner boundary. The orthogonality condition
is satis�ed if the dot product of the vectors A and B
is zero, that is,

A �B = 0 (7)

which translates to

(x� xi)
�
x0 � xi

�
+ (y � yi)

�
y0 � yi

�
= 0 (8)

Substituting equations (5) into equation (8) one
obtains

(xo � xi) (1�Ep)
�
x0
� xi

�
+ (yo� yi) (1�Eq)

�
y0
� yi

�
= 0

(9)

The second condition, that of speci�ed spacing ds in
�gure 3, can be written as

(x� xi)
2+ (y � yi)

2 = ds2 (10)

Substitution of equations (5) into equation (10) re-
sults in

[(xo � xi) (1� Ep)]2 + [(yo � yi) (1� Eq)]2 = ds2

(11)

The exponents p and q can be solved from equa-
tions (9) and (11) and are given by

p =
lnf1 +B(y0 � yi)

�
[(xo� xi)(x

0 � yi)]g

lnE
(12)

and

q =
lnf1� [B=(yo � yi)]g

lnE
(13)

where

B =
dsq

1 + (y0 � yi)2
�
(x0 � xi)2

(14)

and E has the value corresponding to the homotopic
curve lying next to the inner boundary. The values
of p and q given by equations (12) and (13) will result
in constant spacing ds between the �rst homotopic
curve and the boundary as well as near orthogonality
between the trajectory emanating from (xi; yi) and
the inner boundary.

Strict imposition of orthogonality in regions of
high boundary curvature often results in intersection
of the trajectories. Intersecting trajectories can be
separated through modi�cation of p and q by the use
of further exponents r and s, such that

x = xiE
p
r

+ xo(1�Ep
r

) (r < 1:0)

y = yiE
q
s

+ yo(1� Eq
s

) (s < 1:0)

)
(15)

Using constant values for r and s, however, reduces
orthogonality. In order to maintain orthogonality
near the boundary, r and s are made to decay as one
proceeds along trajectories outward from the inner
boundary. This decay is achieved by making r and s

functions of E such that r and s = 1 at the inner
boundary and r and s = 0 at the outer boundary.

Surface Geometry De�nition

As mentioned before, the input surface geometry
may be de�ned either analytically or discretely. In
the analytic case any explicit analytic formula may
be used. A semianalytic method for de�ning blended
wing-body con�gurations has been described in refer-
ence 5. The analytic expressions for surface de�nition
can be integrated into the grid-generation scheme to
produce one set of governing equations for de�ning
any grid point. The exact form of these analytic ex-
pressions is of no consequence to the grid-generation
scheme. In the discrete case, all that is required is
that the surface be de�ned as an ordered set of points
describing each cross section of the geometry.

Parallel Hardware Platforms

The grid-generation software was implemented on
two MIMD platforms. One of them was the Intel
iPSC/860 computer and the other was a network of
Sun workstations con�gured to simulate a MIMD
system. Salient features of the two systems are
discussed below.
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Intel iPSC/860

The Intel iPSC/860 is based on a 64-bit 40-MHz
i860 microprocessor. A single computational node of
the Langley iPSC/860 system consists of the i860,
8 MB dynamic random access memory, and hard-
ware for communication with other nodes. The sys-
tem consists of 32 computational nodes arranged
in a 5-dimensional hypercube using the direct con-
nect routing module and the hypercube interconnect
technology of the earlier 80386-based iPSC/2. The
point-to-point aggregate bandwidth is 2.8 MB/sec
per channel and the latency for message passing is
about 74 �s for message lengths over 100 bytes. Inter-
processor communication takes place through the
send and receive system calls. Any processor can
send a message to any other processor; however, the
destination processor does not acquire the message
unless it issues a receive. The message passing proto-
cols are implemented with software resulting in high
communication overhead.

The complete system is controlled by a system
resource module (SRM), which is based on an Intel
80386 processor. This system handles compilation
and linking of source programs as well as loading of
the executable code into the hypercube nodes and
initiating execution.

Network of Sun Workstations

A collection of Sun workstations was used in
this study as an alternative parallel computing plat-
form. The Express programming environment al-
lows con�guration of a group of networked Sun work-
stations in order to emulate a multinode parallel
computer. Each individual workstation serves as
one node of the resulting parallel system. In the
present study, a total of eight dissimilar Sun work-
stations were used. The collection consisted of one
SPARCstation 2, two SPARCstation SLC's, and �ve
SPARCstation IPC's. The workstations were con-
nected to each other via Ethernet sockets. Inter-
process communications among Express programs
running on the network are performed using stan-
dard UNIX shared memory and semaphore opera-
tions. The three classes of workstations used in this
study are characterized by widely di�erent processing
speeds.

Programming Models

The grid-generation software was implemented
using the node programming model under the na-
tive Fortran environment on the iPSC/860. The
equivalent model in the Express environment is
called the cubix model. This programming model
is characterized by the following features:

1. There is no host or master controller program.

2. A single program is written and compiled.

3. This program is loaded into all nodes.

4. The program executes independently on each
node.

5. The nodes operate independently on their own
data.

6. Nodes share data through message passing.

The most important bene�t of this programming
model is that the underlying code is essentially the
same as if it were executing on a conventional se-
quential computer. This permits the programmer to
utilize usual intuitions when writing, developing, and
debugging the code.

Parallel Algorithm and Notes on

Implementation

Parallelism

The main grid-generator equations are given by
the algebraic relations in equations (15). Once the
surface geometries have been speci�ed either ana-
lytically or discretely, all parameters can be gener-
ated by explicit algebraic formulas. The complete
grid-generation procedure is therefore explicit and
consequently inherently parallelizable. This inher-
ent parallelism is exploited by devising a strategy
for dividing the algorithm into several independent
processes to run simultaneously on many processors.
The strategy consists of mapping the grid onto a reg-
ular computational domain and splitting this domain
so that

1. The load on the processors is balanced.

2. Communication among processors is minimized.

For the present algorithm, satisfaction of these re-
quirements is straightforward. To achieve the �rst
goal, the region is subdivided into a number of sub-
regions that equals the number P of processors in
the parallel system. The completely explicit nature
of the algorithm allows this partitioning to be done
in a way that ensures equal amounts of computa-
tion in all subregions. The initial surface data are
the only relevant data required by the processors.
Once these data have been read or generated analyt-
ically, the computation of each subregion proceeds
independently and requires no interprocessor com-
munication. In the present study, the partitioning
strategy was applied at two levels of parallelism, as
listed below:
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1. At the primary level of parallelism, each planar
grid is computed on a di�erent processor of the
distributed computing system (�g. 4).

2. At the secondary level of parallelism, each pla -
nar grid is broken into several segments. Each
segment is a collection of several radial lines of
the planar grid. These segments are processed in
parallel on di�erent processors (�g. 5).

Partitioning of the grid at levels 1 and 2 can be di-
rectly a�ected by simply distributing relevant loop
indices over the processors. The main body of the
computation is comprised of a three-level nested loop.
Let us denote the loop indices by I, J , and K. The
index I is associated with the outermost loop and de-
notes the number of planar grids in the grid system.
The indices J and K are associated with the inter-
mediate and inner loops and they denote the circum-
ferential and radial points, respectively, in a planar
grid. Partitioning at level 1 entails distributing the
I index in an interleaved fashion over the processors.
Level 2, in turn, requires an interleaved distribution
of the J index. The particular values of the distrib-
uted index of any processor can be easily computed
in individual processors as a function of the proces-
sor number and the maximum value of the index in
the grid system. According to this strategy the code
loaded into each processor is essentially identical.

Input/Output

At the end of the computation, the distributed
grid segments processed on di�erent processors must
be collected in one place to store the ordered ag-
gregate grid system for later use. The usual way
of accomplishing this is to have each processor send
its portion of the grid to a master node via inter-
processor communication. This collection results in
substantial communication overhead. In the present
study the need for this expensive communication
has been obviated by implementing the collection
procedure by means of the CFS available on the
iPSC/860 computer. The CFS provides the nodes
with high-speed simultaneous access to secondary
storage. Files reside on a number of disks that con-
nect to the hypercube through SCSI's on I/O nodes.
A concurrent �le is distributed over the disk drives
in blocks ordered in a round-robin fashion.

Parallel read and write statements for the CFS
system are available under both the native Intel pro-
tocol and the Express protocol. The input geom-
etry for the discretely de�ned body surface is read
into each node using the parallel read operation. For
level 1 parallelism, illustrated in �gure 4, surface data
for sections belonging to each node are read simulta-
neously. Under the Intel protocol the read operation

loads consecutive blocks of data of a speci�ed block
size into the nodes in the order of increasing node
numbers. This order has the e�ect of distributing the
sections over the processors in an interleaved fashion;
hence, there is need for an interleaved distribution of
the I index. The Express implementation requires an
additional seek operation to determine the starting
address of the block to be read into each node. In the
case of level 2 parallelism, illustrated in �gure 5, all
surface points de�ning one cross section of the geom-
etry are read into each node even though the nodes
process only a portion of the sectional grid. This
step is done to eliminate interprocessor communica-
tion that would be required for transferring adjacent
boundary point data for orthogonality calculations.

In the output phase the nodes write their seg-
ments of the computed grid as consecutive blocks
of equal size. The block size equals the number of
points in a sectional grid for level 1 and the number
of points in the collection of radial lines in each node
for level 2. As in the input phase, the nodes output
their blocks in the order of increasing node numbers.
Because of the interleaved distribution of loop in-
dices with a stride equal to the number of nodes in
the system, the output aggregate grid on CFS pre-
serves the global conceptual I, J , and K ordering of
the three-dimensional grid system.

There is an important systemic di�erence between
the Intel and Express implementations of the CFS
system. The interface to the CFS used by Express
is based on the Intel low level I/O system. The cu-
bix programming model under Express requires that
a CFS �le be opened on each node to allow simul-
taneous I/O access. The Intel system, however, has
no concept of a �le that is open on every node. This
di�erence has been circumvented by implementing
the Express interface by opening the �le only on
node 0 and funneling all data to and from the CFS via
node 0. This process has the consequence that CFS
operations under Express are somewhat slower than
those with the optimized Intel libraries, and some
restrictions are placed on which I/O modes can be
supported.

Results and Discussion

Description of Test Cases

Two test cases were used to validate the grid-
generation methodology and the programming
modes. A blended wing-body con�guration geom-
etry was used as the test case for the analytic input
geometry case. This con�guration was de�ned by
64 cross-sectional planes, each containing 32 points
along the circumference of the cross section of the
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body surface. Each planar grid for this case con-
tained 49 points along each radial line. A represen-
tative body geometry along with two cross-sectional
grids is shown in �gure 6. A single planar grid for
this case is presented in �gure 7. Near orthogonality
of grid lines and clustering in the vicinity of the body
surface are clearly demonstrated in the enlarged view
presented in �gure 8.

A high-speed transport aircraft was chosen to
be the test geometry for the discretely de�ned in-
put geometry case. This geometry was speci�ed by
64 cross-sectional shapes of the surface geometry,
each with 42 points along the circumference. The
number of radial grid portions was 49, as in the pre-
vious case. A representative grid system for this case
is shown in �gure 9.

Performance Analysis

A detailed account of the performance of the
algorithm on all computing platforms and in all
programming modes described above is presented in
this section. The execution times reported here are
averaged values for several runs in each category.
It is important to note that the execution time on
the iPSC/860 for an individual case may vary for
identical consecutive runs even in the single-user
mode. The execution times are a�ected by a number
of subtle factors such as network contention, message
timing, caching, and data alignment. It is also
important to note that network �le transfer tra�c
to and from the CFS can cause congestion on the
communication links in the hypercube because the
I/O nodes use the hypercube links to communicate
with each other and the service node.

Total execution times in four di�erent categories
are presented in tables 1 to 4. These execution times
include both computation times and interprocessor
communication times. The interprocessor commu-
nication times were measured by timing the exe-
cution of relevant portions of the code which dealt
with passing data between processors. Execution
times for the complete grid system in the analytic
geometry case are reported with the corresponding
number of processors used in table 1. Both the na-
tive Intel programming model and the Express pro-
gramming model display decreasing execution time
as the number of processors in the hypercube is in-
creased from 2 to 32. The Express execution times
are slightly higher than the corresponding Intel runs
because of the communication overhead associated
with the Express software. Another factor contribut-
ing to the increase in the execution time is the fact
that CFS operation is slower with Express, as men-
tioned previously. Similar trends are seen in the

execution times for the discretely de�ned geometry
case presented in table 2. Execution times for the
Intel and the Express programming modes in the an-
alytic geometry case are plotted against the number
of processors in �gure 10. Execution times obtained
for a fully vectorized version of the code on a four-
processor Cray-2 and an eight-processor Cray Y-MP
are also plotted in �gure 10. Single-processor exe-
cution times for the Cray machines are included for
reference. The execution time for the parallel code
approaches the Cray execution times as the num-
ber of processors increases. An indication of typical
interprocessor communication times associated with
the algorithm is given in �gure 11, wherein commu-
nication time has been plotted against the number
of processors in the analytic input geometry case.
The communication time is shown to be a small frac-
tion of the total execution time. Execution times
obtained for level 2 parallelism are presented in ta-
bles 3 and 4. At this level, a collection of radial lines
belonging to a single planar grid is computed on each
processor. The amount of computational activity in
each processor is very small in this case, and the to-
tal execution time is dominated by I/O activity. The
CFS I/O activity does not depend on the number of
processors; the result being an insigni�cant reduction
in execution time as the number of processors is in-
creased. Note that the Express execution times are
consistently higher than the corresponding times for
the Intel programming mode because CFS activity is
essentially serialized under Express.

The next series of �gures illustrates the variation
of the execution time speed-up ratios with the num-
ber of processors used. The speed-up ratio Sp is de-
�ned as follows:

Sp =
T1

Tp

where Tp is the execution time of p processors and T1
is the execution time for a single processor. Speed-
up ratios of the analytic input geometry are plotted
against the number of processors in �gure 12. Re-
sults for both the Intel programming mode and the
Express programming mode are presented. These re-
sults are for level 1 parallelism (i.e., for the complete
three-dimensional grid system). Both programming
modes result in good correlation of the speed-up ra-
tio with the number of processors used. Ideally the
speed-up ratio Sp for P processors should be equal
to p; however, in a realistic application, the pres-
ence of nonscalable factors such as overhead, broad-
casting of initial run-control parameters to all proces-
sors, and certain I/O operations will lower the value
of Sp somewhat. The speed-up-ratio curves in �g-
ure 12 are nearly linear an indication of consistent
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reductions in execution time as the number of proces-
sors is increased. The speed-up ratios in the Express
mode are lower than the corresponding ratios for the
Intel programming mode because of overhead and
slower CFS operations associated with the Express
environment. Speed-up ratios plotted against the
number of processors in the discrete geometry case
are presented in �gure 13. Similar variations in
speed-up ratios are again noted in both the Intel
mode and the Express mode.

Performance results obtained by running the code
under the Express environment on a network of
eight Sun workstations are presented in the next two
plots. Figures 14 and 15 illustrate the performance
of the algorithm while computing the complete three-
dimensional grid system in the analytic and discrete
input geometry cases, respectively. Speed-up ratios
increased with increasing numbers of processors.
However, it is important to remember that the work-
stations in the network varied widely in their com-
puting power and characteristics, and consequently, a
consistent correlation to performance is not expected.

Conclusions

An algebraic grid-generation method based on
homotopic relations has been demonstrated to be
highly parallelizable at several levels of domain de-
composition. Performance of the algorithm on the
Intel iPSC/860 machine with 32 nodes has displayed
consistent correlation of speed-up ratios with the
number of processors. A strength of the algorithm
is its relatively low need for interprocessor commu-
nications. The Express algorithm was also executed
successfully on a network of Sun workstations to vali-
date the possibility of running parallel codes without

a true parallel machine. The consistency of speed-
up ratios correlating with the number of processors
on a network of workstations is expected to improve
with uniformity of the computing characteristics of
the individual workstations.

NASA Langley Research Center

Hampton, VA 23681-0001
December 3, 1993
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Table 1. Execution Time for Complete Grid in Analytic Geometry Case

Execution time, sec Speed-up ratio

Number of
processors iPSC/860 Express-iPSC/860 iPSC/860 Express-iPSC/860

1 65.12 69.91 1.00 1.00
2 32.89 35.31 1.98 1.98
4 16.54 17.70 3.93 3.94
8 8.43 9.50 7.72 7.36
16 4.55 5.58 14.31 12.52
32 2.81 3.70 23.17 18.89

Table 2. Execution Time for Complete Grid in Discrete Geometry Case

Execution time, sec Speed-up ratio

Number of
processors iPSC/860 Express-iPSC/860 iPSC/860 Express-iPSC/860

1 119.63 121.22 1.00 1.00
2 60.73 63.80 1.97 1.90
4 30.91 33.60 3.87 3.60
8 16.68 17.99 7.63 6.74
16 8.44 10.38 14.17 11.68
32 4.87 6.99 24.56 17.35

Table 3. Execution Time for Single Planar Grid

in Analytic Geometry Case

Execution time, sec

Number of
processors iPSC/860 Express-iPSC/860a

2 0.766 2.56
4 .514 2.72
8 .412 2.81
16 .381 3.02

aExpress serializes CFS I/O operations.

Table 4. Execution Time for Single Planar Grid

in Discrete Geometry Case

Execution time, sec

Number of
processors iPSC/860 Express-iPSC/860a

2 1.200 3.19
4 .835 3.99
8 .659 4.40
16 .630 4.54
32 .582 5.39

aExpress serializes CFS I/O operations.
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Figure 1. Corresponding inner and outer boundary points.

Figure 2. Schematic representation of quasi-three-dimensional grid system.
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Figure 3. Vectors used in grid orthogonalization.

Processors P3P1 P2 PnP4

Figure 4. Schematic of parallelism at primary level.
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Figure 7. Representative computed planar grid for analytic case.

Figure 8. Enlarged view of representative computed planar grid.
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Figure 10. Variation of total execution time with number of processors.
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Figure 11. Variation of communication time with number of processors.
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Figure 12. Variation of speed-up ratio with number of processors for analytic geometry case on iPSC/860

machine.
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Figure 14. Variation of speed-up ratio with number of processors for analytic geometry case on Sun network.
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Figure 5. Schematic of parallelism at secondary level.

Figure 6. Representative computed grid for analytic case.

Figure 9. Representative computed grid for discrete case.
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